RATE OF HEAT PROPAGATION BY CONDUCTION IN GASES

E, G, Dolomanov UDC 536.24

A formula giving the rate of heat propagation by thermal conduction in gases as a function
of absolute temperature is derived,

It is usually assumed in the theory of heat conduction that thermal energy is propagated instantaneous-
ly by the conduction mechanism, This assumption satisfies a large number of technical problems for low
velocities of the medium and a low intensity of the heat-transfer processes. With the development of tech-
niques using high~intensity, transient processes, involving high velocities of the heat carriers (coolants),
it is usual to assume that the heat is propagated, not infinitely rapidly, but with a certain high, finite ve-
locity. A hypothesis as to the finite rates of heat propagation Wq was proposed in [1], and a formula was
given for its calculation

W, =V hept. (1)

It was noted in [2], however, that the experimental measurement of the relaxation time T was quite
impossible with contemporary measuring methods. For practical calculations Eq. (1) is therefore inap-
plicable, For practical purposes we require a formula expressing the rate of heat flow in terms of known
or easily determinable quantities, We set ourselved the task of converting the Lykov formula (1) to a form
better suited to technical calculations.

" For a steady-state, one~-dimensional temperature field, the scalar magnitude of the thermal flux den-
gity is '
=2 2)
q it (
On considering the flow of heat through a layer of stationary gas (as a condition for the contact rela-

tionship between the gas and the surrounding medium we must take p = const), the Fourier law of heat con-
duction may be written in the form [2]

7= pc, dx ’ 3)
In determining the instantaneous velocity of the heat flow, i.e., the velocity at a specified point in
space, we must take a layer of stationary gas with as small a width as possible, The smaller we take the
width of the gas layer, the more fairly may we consider A = const, p = const, and ¢, = const, Then in the
steady heat flow (g = const) the enthalpy gradient will be constant, i.e., the enthalpy will vary linearly with
X, and we may write

di _Hy,—H; _ H,—H (4)

el 772 — const.
dx Xy — Xy Xy —— Xy

We see from the manner in which the relationship for the thermal conductivity was derived in [3] that
the smallest linear dimension may only be twice the mean free path of the molecules, since xp—x; = (z + )]
~(z—1) = 2l, For a layer of thickness 2!, allowing for the foregoing considerations, Eq, (3) may be written
in the form

g = (H, .y —H,1) (5)
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from which it is easy to see that the instantaneous (local) rate of heat flow is

k. (6)
‘ 2pc,l
since the flux density of any quantity equals the product of its volume concentration and velocity,
According to the molecular kinetic theory of gases,
A = 1/3plvc, = ne,, ("

where the mean velocity of the chaotic (random) motion of the molecules

_ (8
U= ‘/i RT .
I

Equation (8) was obtained for a monatomic gas, In order to allow for the polyatomic state of the mole~
cules, certain authors, for example, Mott-Smith [4], use Eq. (8) in the form

_ — (9)
v=1/ Y _Rr.
y—1
From Eq, (7) we derive the simple theoretical relationship )\/ncv = 1, which is not confirmed by ex-
periment, This necessitates the introduction of a correcting factor into Eq, (7)

S = Ame,, (10)

which may be expregsed in terms of the Prandtl number
Pr — -r]cp//}\” (11)

namely
Sp= v/Pr. (12)
Using Eqs, (7), (9), and (12), Eq, (6) may be reduced to the form
1 —
W = Y

@ = “apr ]/ S RT (13)

Equation (13) may easily be used in practical calculations, since it is mathematically fairly simple,
while the values of Pr and v are tabulated for many gases on the basis of experimental data covering a wide
temperature range,

A number of research workers, using the molecular kinetic theory of gases, allowing for various
components of the specific heat (translational, rotational, and vibrational degrees of freedom) and other
physical characteristics of the gas, have derived a variety of relations for the correction factor S, Incases
in which they prove accurate enough, these correction factors are mathematically complicated (Mason,
Monchik, Saxen, Gambir, and others) and cannot be used in technical calculations, The simplest is that of
Aiken

Sp— 5 (14)

and op using this Eq, (6) may be reduced to the form

9y —b / .
W o= 2l 2y ¥ -
q 24y 1/ — RT . (15)

The Aiken correction factor, which has been regarded as satisfactory for some 15 years, gives large
errors for certain gases, Table 1 compares the values of Wq calculated by Egs, (13) and (15),

Equation (13) indicates that Wq depends solely on the nature and temperature of the gas, The thermal
flux exists in the presence of a temperature gradient, and of course the rate of heat propagation will di-
minish along the direction of heat flow, Allowing for the foregoing, the velocity calculated from Eq, (13)
should be called the local heat velocity,

Remembering that the velocity of sound @ = VYRT, Eq. (13) may be modified:

1 —HF— 1
= ey 6Pr Y7 —1 (
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TABLE 1, Rate of Heat Propagation by Conduction for Several Gases
at Atmospheric Pressure

Gas Pr Wg from ] Wg from Deviation, B
(13) | a5 %
Argon 0,663 94,2 93,9 —0 ,319 0,307
Helium 0,684 290 297 —+2 ,41 0,298
Hydrogen 0,688 476 447 —6 ,09 0,378
Nitrogen 0,705 126 120 —4 ,76 0,372
Oxygen . 0,720 116 113 —2 ,59 0,367
Alr . 0,707 124 119 —4 .03 0,373
Carbon disulfide ! 0,778 85,4 82,2 —3 ,75 0,447
Carbon dioxide 0,780 101 102 +0 ,99 0,390
Water vapor 1,06 119 161 ~+35,3 0,297
Amonia 0,908 138 162 +17,4 0,330
Methane 0,734 175 166 — 5,14 0,406
Sulfur dioxide 0,874 71,9 | 79,6 : +10,7 0,367

Note, 1) All gases taken at 0°C, water vapor at 100°C. 2) Values of y and Pr taken
from [5],

and denoting

I S (17
6Pryy—1 "~
we obtain
W, = Ba. (18)

We see from Table 1 that B < 1, and hence the velocity of heat flow is always lower than the velocity
of sound,

We see that the relation for the heat velocity in a stationary gas will apply to a gas flow also if we
use a system of coordinates connected to the center of mass of the element of gas, In practice many prob-
lems are encountered in which it is required to determine the velocity of heat propagation relative to the
stationary walls of a channel through which the gas flow is passing, Transfer of the coordinate system to
the stationary wall gives

W, =W £W,. (19)

In an accelerating gas flow, the temperature diminishes on passing along it W > 0 but dT < 0), the
gas and heat flows coincide in direction, and in Eq, (19) the plus sign has to be taken, In a decelerating gas
flow, the temperature rises along the flow (dW < 0 but dT > 0), the thermal flux opposes the gas flow, and
in Eq, (19) the minus signhastobetaken. When the velocity of the gas flow reaches that of the heat flow,
the velocity of the heat flow relative to the wall vanishes, since in this case W =Wy = Ba and W, = 0, It
also follows that in a decelerating gas flow with M = B it is impossible for heat to propagate by conduction
against the gas flow,

The chief problem in the analytical theory of heat conduction is that of finding the temperature field,
Knowing the temperature field, it is easy to use (13) in order to determine the field of conductive heat flow
velocities,

NOTATION

W, Wy, qu are the velocifies of the gas flow, the heat flow relative to the cenier of mass of the gas
element, and the heat flow relative to the stationary walls of the channel, m/sec;

T is the relaxation time, sec;

p is the mass density, kg/m?;

C, Cys Cp are the gravimetric specific heat and specific heat al constant volume and pressure, J / kg
- deg;

A is the thermadl conductivity, W/(m - deg);

q is the heat flux density, W/m?;

T is the absolute temperature, °K;

H is the volumetric enthalpy concentration, J/m?>;
p:4 is a coordinate, a linear dimension, m;

1564



3R 28 nwHal~

is the mean free path of the molecules, m;
is the mean velocity of random motion of the molecules, m/sec;
is the gas constant, J/(kg -deg);
is the correction factor;
is the velocity of sound, m/sec;
W/a is the Mach number;
is the ratio of the specific heats;
is the viscosity, N -sec/m?,
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