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A fo rmula  giving the r a t e  of heat  propagat ion  by t h e r m a l  conduction in gases  as a function 
of absolute t e m p e r a t u r e  is der ived .  

It  ts usua l ly  a s s u m e d  in the theory  of heat  conduction that t h e r m a l  energy  is p ropaga ted  ins tan taneous-  
ly by  the conduction m e c h a n i s m .  This  assumpt ion  sa t i s f i e s  a l a rge  number  of technical  p rob l ems  for  low 
veloci t ies  of the medium and a low intensi ty  of the h e a t - t r a n s f e r  p r o c e s s e s .  With the development  of t ech -  
niques using high- in tens i ty ,  t r ans ien t  p r o c e s s e s ,  involving high veloci t ies  of the heat  c a r r i e r s  (coolants), 
it is  usual  to a s s u m e  that the heat  is p ropaga ted ,  not infinitely rapidly ,  but with a ce r t a in  high, finite ve -  
loci ty .  A hypothesis  as to the finite r a t e s  of heat  propagat ion  Wq was p roposed  in [1], and a fo rmula  was 
given for  i t s  calcula t ion 

Wq ~ V )~/cp~. (1) 

It was noted in [2], however ,  that  the exper imenta l  m e a s u r e m e n t  of the re laxa t ion  t ime ~" was quite 
imposs ib le  with c o n t e m p o r a r y  m e a s u r i n g  methods .  F o r  p rac t i ca l  calculat ions Eq.  (1) is t he re fo re  inap-  
p l icable .  F o r  p rac t i ca l  pu rposes  we requ i re  a fo rmula  express ing  the r a t e  of heat flow in t e r m s  of known 
or  ea s i ly  de t e rminab le  quant i t ies .  We set  ourse lved  the t a s k  of conver t ing the Lykov fo rmula  {1) to a fo rm 
be t t e r  sui ted to technical  ca lcu la t ions .  

F o r  a s t e ady - s t a t e ,  one-d imens iona l  t e m p e r a t u r e  f ield,  the s ca l a r  magnitude of the t h e r m a l  flux den-  

s i ty  is 

q = - - L d - T .  (2) 
dx 

On cons ider ing  the flow of heat through a l ayer  of s ta t ionary  gas  (as a condition for  the contact  r e l a -  
t ionship between the gas  and the surrounding medium we must  take p = const) ,  the F o u r i e r  law of heat con-  
duction may  be wri t ten  in the f o r m  [2] 

L dH (3) 
q . . . .  dx pc~ 

In de te rmin ing  the instantaneous veloci ty  of the heat flow, i .e . ,  the veloci ty  at a speci f ied  point in 
space ,  we mus t  take a l aye r  of statio~tary gas  with as smal l  a width as poss ib le .  The s m a l I e r  we take the 
width of the gas  l aye r ,  the m o r e  f a i r ly  may  we cons ider  X = const ,  O = const ,  and Cp = const .  Then in the 
s teady heat flow (q = const) the enthalpy gradient  will  be constant ,  i .e . ,  the enthalpy will  va ry  l inear Iy  with 

x ,  and we raay wr i te  

d H H~ - -  H~ H~ - -  H2 _ const. (4) 
d x  x 2 - -  x 1 x 2  - -  x 1  

We see f rom the manner  in which the re la t ionship  for  the t h e r m a l  conductivity was der ived  in [3] that 
the sma l l e s t  l inear  d imension may  only be twice the mean  f ree  path of the molecu les ,  s ince x z - x t  = (z + l) 
- ( z - l )  = 21. F o r  a l aye r  of th ickness  2 l ,  allowing for  the foregoing cons ide ra t ions ,  Eq .  (3) m a y  be wr i t ten  

in the f o r m  

q - (H~_z - -  H~+z), (5) 
29%l 
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from which it is easy to see that the instantaneous (local) rate of heat flow is 

Wq- 
29@I 

(G) 

since the flux density of any quantity equals the product  of i ts volume concentra t ion and velocity.  

According to the molecular  kinetic theory  of gases ,  

~, = 1/3plvc~ = ~lco, 

where the mean veioci ty of the chaotic (random) motion of the molecules  

(7) 

(s) 

Equation (8) was obtained for a monatomic gas .  In o rder  to allow for the polyatomic state of the mole-  
cules ,  ce r ta in  authors ,  for  example,  Mott-Smith [4], use Eq.  (8) in the fo rm 

From Eq. (7) 
periment. This necessitates the introduction of a correcting factor into Eq. (7) 

S = ~/~lc,, 

which may be expressed  in t e r m s  of the Prandt l  number  

Pr = q%/k ,  

namely  

SD = 7/Pr. 

Using Eqs .  (7), (9), and (12), Eq.  (6) may be reduced to the fo rm 

W q - -  1 " 

we der ive  the s imple theore t ica l  re la t ionship 2v/Vc v = 1, which is not conf i rmed by ex-  

(10) 

(11) 

(12) 

(13) 

Equation (13) may eas i ly  be used in p rac t ica l  calculat ions,  since it is mathemat ica l ly  fa i r ly  s imple,  
while the values of P r  and y a re  tabulated for  many gases  on the basis  of exper imenta l  data cover ing a wide 
t e m p e r a t u r e  range .  

A number  of r e s e a r c h  worke r s ,  using the molecular  kinetic theory of gases ,  allowing for  various 
components of the specific heat ( t ransla t ional ,  rotat ional ,  and vibrat ional  degrees  of f reedom) and other  
physical  cha rac t e r i s t i c s  of the gas,  have der ived a var ie ty  of re la t ions  for  the co r r ec t i on  fac tor  S. Incases  
in which they prove  accura te  enough, these co r r ec t i on  fac to r s  a re  mathemat ica l ly  complicated (Mason, 
Monchik, Saxen, Gambir, and others) and cannot be used in technical calculations. The simplest is that of 
Aiken 

97 --5 (14) sE- 
4 

and on using this Eq.  (6) may be reduced  to the form 

_ 972475 --]// Wq ~_7 RT. (15) 

The Aiken correction factor, which has been regarded as satisfactory for some 15 years, gives largo 
errors for certain gases. Table 1 compares the values of Wq calculated by Eqs. (13) and (15). 

Equation (13) indicates that Wq depends solely on the nature and temperature of the gas. The thermal 
flux exists in the presence of a temperature gradient, and of course the rate of heat propagation will di- 
minish along the d i rec t ion  of heat flow. Allowing for  the foregoing,  the veloci ty calculated f rom Eq.  (13) 
should be called the local  heat veloci ty .  

Remember ing  that the veloci ty  of sound a = 7~/-T-R-'T, Eq.  (13) may  be modified:  

Wq 1 V -TRT  1 - a ( 1 6 )  
6Pr V 7- 1 6Pr l/7- i 
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and denoting 

TABLE i .  Rate of Heat Propagat ionby Conduction for  Several  Gases 
at Atmospher ic  P r e s s u r e  

Gas pr Wg from W from g Deviation, B 
(13) (15) ~/~ 

Argon 
Helium 
Hydrogen 
Nitrogen 
Oxygen 
Air 
Carbon disulfide 
Carbon dioxide 
Water vapo r 
Amon/a 
Methane 
Sulfur dioxide 

0,663 
0,684 
0,688 
0,705 
0,720 
0,707 
0,778 
0,780 
l ,06 
0,908 
0,734 
0,874 

94,2 
290 
476 
126 
116 
124 
85,4 

101 
119 
138 
175 
71,9 

93,9 
297 
447 
120 
113 
119 
82,2 

102 
161 
162 
166 
79,6 

--0 ,319 
+2 ,4I 
--6 ,09 
--4 ,76 
--2 ,59 
--4 ,03 
--3 ,75 
q:-o ,99 
+35,3 
-}-17,4 
- -  5,14 
+1o,7 

0,307 
0,298 
0,378 
0,372 
0,367 
0,373 
0,447 
0,390 
0,297 
0,330 
0,406 
0,367 

Not_._ee. 1) All gases taken at 0~ water vapor at 100~ 2) Va!ues of ~ and Pr taken 
ffdm [5]. 

1 (17)  
B =  

we obtain 
Wq = Ba. (18) 

We see f rom Table 1 that B < 1, and hence the velocity of heat flow is always lower than the velocity 
of sound. 

We see that the relat ion for the heat velocity in a s ta t ionary gas will apply to a gas flow also if we 
use a sys tem of coordinates  connected to the center  of mass  of the element of gas .  In pract ice  many p rob-  
lems a re  encountered in which it is requi red  to determine the velocity of heat propagation relat ive to the 
s ta t ionary  walls of a channel through which the gas flow is passing.  T rans fe r  of the coordinate sys tem to 

the s tat ionary wall gives 

V/qw = 1t7 • Wq. (19) 

In an accelera t ing gas flow, the t empera tu re  diminishes on passing along it (dW > 0 but dT < 0), the 
gas and heat flows coincide in direct ion,  and in Eq.  (19) the plus sign has to be taken. In a decelerat ing gas 
flow, the t empera tu re  r i s e s  along the flow (dW < 0 but dT > 0), the thermal  flux opposes the gas flow, and 
in Eq.  (19) the minus s ignhas  tobe taken .  When the velocity of the gas flow reaches  that of the heat flow, 
the velocity of the heat flow relat ive to the wall vanishes,  since in this case W = Wq = Ba and Wqw = 0o It 
also follows that in a decelerat ing gas flow with M _~ B it is impossible for heat to propagate by conduction 
against the gas flow. 

The chief problem in the analytical  theory  of heat conduction is that of finding the tempera ture  field. 
Knowing the t empera tu re  field, it is easy  to use (13) in order  to determine the field of conductive heat flow 

veloci t ies .  

W, Wq, Wqw 

T 

P 
C, or ,  Cp 

X 
q 
T 
H 
x 

N O T A T I O N  

are  the velocities of the gas flow, the heat flow relat ive to the center  of mass  of the gas 
element,  and the heat flow relat ive to the s ta t ionary walls of the channel, m / s e c ;  
is the relaxation t ime,  see;  
is the mass  density,  kg/ma; 
a re  the g rav imet r ic  specific heat and specific heat at constant volume and p r e s s u r e ,  J / k g  

�9 d e g ;  
is the the rma l  conductivity, W / ( m .  deg); 
is the heat flux density,  W/m2; 
is the absolute t empera tu re ,  ~ 
is the volumetr ic  enthalpy concentrat ion,  J/m3; 
is a coordinate,  a l inear  dimension, m; 
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l 
w 

v 
R 
S 
a 

M =W/a 

is the metal free path of the molecules, m; 
is the mean velocity of random motion of the molecules, m/sec ;  
is the gas constant, J / (kg  ~ 
is the correction factor; 
is the velocity of sound, m/sec ;  
is the Mach number; 
is the ratio of the specific heats; 
is the viscosity, N ~ 
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